Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Epidemiol Glob Health ; 13(2): 303-312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-20239027

RESUMO

BACKGROUND: The Delta variant of SARS-COV-2 has replaced previously circulating strains around the world in 2021. Sporadic outbreaks of the Delta variant in China have posed a concern about how to properly respond to the battle against evolving COVID-19. Here, we analyzed the "hierarchical and classified prevention and control (HCPC)" measures strategy deployed during the recent Guangzhou outbreak. METHODS: A modified susceptible-exposed-pre-symptomatic-infectious-recovered (SEPIR) model was developed and applied to study a range of different scenarios to evaluate the effectiveness of policy deployment. We simulated severe different scenarios to understand policy implementation and timing of implementation. Two outcomes were measured: magnitude of transmission and duration of transmission. The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% confidence interval (CI). RESULTS: Based on our simulation, the outbreak would become out of control with 7 million estimated infections under the assumption of the absence of any interventions than the 153 reported cases in reality in Guangzhou. The simulation on delayed implementation of interventions showed that the total case numbers would also increase by 166.67%-813.07% if the interventions were delayed by 3 days or 7 days. CONCLUSIONS: It may be concluded that timely and more precise interventions including mass testing and graded community management are effective measures for Delta variant containment in China.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças , China/epidemiologia
2.
Poult Sci ; 102(4): 102534, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-2287161

RESUMO

Although vaccines play a major role in the prevention of infectious bronchitis (IB), Anti-IB drugs still have great potential in poultry production. Radix Isatidis polysaccharide (RIP) is a crude extract of Banlangen with antioxidant, antibacterial, antiviral, and multiple immunomodulatory functions. The aim of this study was to explore the innate immune mechanisms responsible for RIP-mediated alleviation of infectious bronchitis virus (IBV)-induced kidney lesions in chickens. Specific-pathogen-free (SPF) chicken and chicken embryo kidney (CEK) cells cultures were pretreated with RIP and then infected with the QX-type IBV strain, Sczy3. Morbidity, mortality, and tissue mean lesion scores were calculated for IBV-infected chickens, and the viral loads, inflammatory factor gene mRNA expression levels, and innate immune pathway gene mRNA expression levels in infected chickens and CEK cell cultures were determined. The results show that RIP could alleviate IBV-induced kidney damage, decrease CEK cells susceptibility to IBV infection, and reduce viral loads. Additionally, RIP reduced the mRNA expression levels of the inflammatory factors IL-6, IL-8, and IL-1ß by decreasing the mRNA expression level of NF-κB. Conversely, the expression levels of MDA5, TLR3, STING, Myd88, IRF7, and IFN-ß were increased, indicating that RIP conferred resistance to QX-type IBV infection via the MDA5, TLR3, IRF7 signaling pathway. These results provide a reference for both further research into the antiviral mechanisms of RIP and the development of preventative and therapeutic drugs for IB.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas/genética , Receptor 3 Toll-Like , Infecções por Coronavirus/veterinária , Transdução de Sinais , Antivirais/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , RNA Mensageiro , Doenças das Aves Domésticas/prevenção & controle
3.
Sci Rep ; 13(1): 4503, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2263539

RESUMO

SARS-CoV-2 (COVID-19) has caused over 80 million infections 973,000 deaths in the United States, and mutations are linked to increased transmissibility. This study aimed to determine the effect of SARS-CoV-2 variants on respiratory features, mortality, and to determine the effect of vaccination status. A retrospective review of medical records (n = 55,406 unique patients) using the University of California Health COvid Research Data Set (UC CORDS) was performed to identify respiratory features, vaccination status, and mortality from 01/01/2020 to 04/26/2022. Variants were identified using the CDC data tracker. Increased odds of death were observed amongst unvaccinated individuals and fully vaccinated, partially vaccinated, or individuals who received any vaccination during multiple waves of the pandemic. Vaccination status was associated with survival and a decreased frequency of many respiratory features. More recent SARS-CoV-2 variants show a reduction in lower respiratory tract features with an increase in upper respiratory tract features. Being fully vaccinated results in fewer respiratory features and higher odds of survival, supporting vaccination in preventing morbidity and mortality from COVID-19.


Assuntos
COVID-19 , Distrofias de Cones e Bastonetes , Laringe , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vacinação
4.
J Infect Dis ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2283518

RESUMO

BACKGROUND: China has been using inactivated COVID-19 vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289,427 close-contacts ≥3 years old exposed to Omicron BA.2 cases; 31,831 turned nucleic-acid amplification test (NAAT)-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% had COVID-19 pneumonia, and 0.15% had severe/critical COVID-19. None died. Adjusted VE against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against pneumonia or worse infection and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.

5.
Cancer Commun (Lond) ; 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: covidwho-2288457

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) are considered significant contributors to cancer progression, especially metastasis. However, it is still unclear whether NETs are involved in hepatitis B virus (HBV)-related hepatocarcinogenesis and have potential clinical significance during evaluation and management for hepatocellular carcinoma (HCC). In this study, we aimed to investigate the functional mechanism of NETs in HBV-related hepatocarcinogenesis and their clinical significance. METHODS: A total of 175 HCC patients with and without HBV infection and 58 healthy controls were enrolled in this study. NETs were measured in tissue specimens, freshly isolated neutrophils and blood serum from these patients, and the correlation of circulating serum NETs levels with malignancy was evaluated. The mechanism by which HBV modulates NETs formation was explored using cell-based studies. In addition, in vitro and in vivo experiments were further performed to clarify the functional mechanism of NETs on the growth and metastasis of HCC. RESULTS: We observed an elevated level of NETs in blood serum and tissue specimens from HCC patients, especially those infected with HBV. NETs facilitated the growth and metastasis of HCC both in vitro and in vivo, which were mainly dominated by increased angiogenesis, epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinases (MMPs)-induced extracellular matrix (ECM) degradation and NETs-mediated cell trapping. Inhibition of NETs generation by DNase 1 effectively abrogated the NETs-aroused HCC growth and metastasis. In addition, HBV-induced S100A9 accelerated the generation of NETs, which was mediated by activation of toll-like receptor (TLR4)/receptor for advanced glycation end products (RAGE)-reactive oxygen species (ROS) signaling. Further, circulatory NETs were found to correlate with viral load, TNM stage and metastasis status in HBV-related HCC, and the identified NETs could predict extrahepatic metastasis, with an area under the ROC curve (AUC) of 0.83 and 90.3% sensitivity and 62.8% specificity at a cutoff value of 0.32. CONCLUSIONS: Our findings indicated that activation of RAGE/TLR4-ROS signaling by HBV-induced S100A9 resulted in abundant NETs formation, which subsequently facilitated the growth and metastasis of HCC cells. More importantly, the identified circulatory NETs exhibited potential as an alternative biomarker for predicting extrahepatic metastasis in HBV-related HCC.

6.
Front Public Health ; 11: 1015969, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2231124

RESUMO

Background: Precise public health and clinical interventions for the COVID-19 pandemic has spurred a global rush on SARS-CoV-2 variant tracking, but current approaches to variant tracking are challenged by the flood of viral genome sequences leading to a loss of timeliness, accuracy, and reliability. Here, we devised a new co-mutation network framework, aiming to tackle these difficulties in variant surveillance. Methods: To avoid simultaneous input and modeling of the whole large-scale data, we dynamically investigate the nucleotide covarying pattern of weekly sequences. The community detection algorithm is applied to a co-occurring genomic alteration network constructed from mutation corpora of weekly collected data. Co-mutation communities are identified, extracted, and characterized as variant markers. They contribute to the creation and weekly updates of a community-based variant dictionary tree representing SARS-CoV-2 evolution, where highly similar ones between weeks have been merged to represent the same variants. Emerging communities imply the presence of novel viral variants or new branches of existing variants. This process was benchmarked with worldwide GISAID data and validated using national level data from six COVID-19 hotspot countries. Results: A total of 235 co-mutation communities were identified after a 120 weeks' investigation of worldwide sequence data, from March 2020 to mid-June 2022. The dictionary tree progressively developed from these communities perfectly recorded the time course of SARS-CoV-2 branching, coinciding with GISAID clades. The time-varying prevalence of these communities in the viral population showed a good match with the emergence and circulation of the variants they represented. All these benchmark results not only exhibited the methodology features but also demonstrated high efficiency in detection of the pandemic variants. When it was applied to regional variant surveillance, our method displayed significantly earlier identification of feature communities of major WHO-named SARS-CoV-2 variants in contrast with Pangolin's monitoring. Conclusion: An efficient genomic surveillance framework built from weekly co-mutation networks and a dynamic community-based variant dictionary tree enables early detection and continuous investigation of SARS-CoV-2 variants overcoming genomic data flood, aiding in the response to the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Reprodutibilidade dos Testes , Mutação
7.
Transbound Emerg Dis ; 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: covidwho-2232604

RESUMO

Porcine epidemic diarrhoea virus (PEDV) is an emerging and re-emerging swine enterovirus that causes highly contagious diarrhoea and mortality in piglets. To better understand the current prevalence of PEDV in mid-west China, and to find out the reason for the re-emergence of PEDV from the viral genomic characteristics. Herein, we firstly investigated epidemiology of PEDV in mid-west China from 2019 to 2020. A total of 62.23% (257/413) of diarrhoea samples were positive for PEDV, and the PEDV-positive cases were mainly detected in winter. Then, we selected the SXSL strain as a representative strain to study the genetic and pathogenic characterization of PEDV pandemic strains in mid-west China. The recombination analysis showed that SXSL strain was a recombinant strain, and the major and minor parent strains of the recombination are CH/SCZJ/2018 strain and GDS48 strain, respectively. Complete genome sequencing and homology analysis showed that the S protein of SXSL strain contained multiple amino acid indels and mutations compared to the PEDV representative strains. Furthermore, we evaluated the effect of S protein on the infectivity and pathogenicity of PEDV by the PEDV reverse genetics system, and results showed that SXSL S protein increased the infectivity and pathogenicity of chimeric virus. Overall, our findings provided important information for understanding the roles of S protein in the prevalence of PEDV in mid-west China and developing vaccines based on PEDV pandemic strains.

8.
Vet Microbiol ; 277: 109619, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-2150799

RESUMO

The virulence of avian gamma-coronavirus infectious bronchitis viruses (IBV) for the kidney has led to high mortality in dominant-genotype isolations, but the key sites of viral protein that determine kidney tropism are still not fully clear. In this study, the amino acid sequences of the S2 subunit of IBVs with opposing adaptivity to chicken embryonic kidney cells (CEKs) were aligned to identify putative sites associated with differences in viral adaptability. The S2 gene and the putative sites of the non-adapted CN strain were introduced into the CEKs-adapted SczyC30 strain to rescue seven mutants. Analysis of growth characteristics showed that the replacement of the entire S2 subunit and the L1089I substitution in the S2 subunit entirely abolished the proliferation of recombinant IBV in CEKs as well as in primary chicken oviduct epithelial cells. Pathogenicity assays also support the decisive role of this L1089 for viral nephrotropism, and this non-nephrotropic L1089I substitution significantly attenuates pathogenicity. Analysis of the putative cause of proliferation inhibition in CEKs suggests that the L1089I substitution affects neither virus attachment nor endocytosis, but instead fails to form double-membrane vesicles to initiate the viral replication and translation. Position 1089 of the IBV S2 subunit is conservative and predicted to lie in heptad repeat 2 domains. It is therefore reasonable to conclude that the L1089I substitution alters the nephrotropism of parent strain by affecting virus-cell fusion. These findings provide crucial insights into the adaptive mechanisms of IBV and have applications in the development of vaccines and drugs against IB.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Fusão Celular/veterinária , Galinhas , Tropismo Viral , Rim , Tropismo , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética
9.
Signal Transduct Target Ther ; 7(1): 373, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2096666

RESUMO

Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.


Assuntos
COVID-19 , Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Mpox/epidemiologia , Mpox/prevenção & controle , Homossexualidade Masculina , Pandemias , Monkeypox virus
10.
Clin Nurs Res ; 31(8): 1390-1398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2053680

RESUMO

Post-acute sequelae of SARS-CoV-2 (PASC) is defined as persistent symptoms after apparent recovery from acute COVID-19 infection, also known as COVID-19 long-haul. We performed a retrospective review of electronic health records (EHR) from the University of California COvid Research Data Set (UC CORDS), a de-identified EHR of PCR-confirmed SARS-CoV-2-positive patients in California. The purposes were to (1) describe the prevalence of PASC, (2) describe COVID-19 symptoms and symptom clusters, and (3) identify risk factors for PASC. Data were subjected to non-negative matrix factorization to identify symptom clusters, and a predictive model of PASC was developed. PASC prevalence was 11% (277/2,153), and of these patients, 66% (183/277) were considered asymptomatic at days 0-30. Five PASC symptom clusters emerged and specific symptoms at days 0-30 were associated with PASC. Women were more likely than men to develop PASC, with all age groups and ethnicities represented. PASC is a public health priority.


Assuntos
COVID-19 , Pandemias , Masculino , Humanos , Feminino , COVID-19/epidemiologia , SARS-CoV-2 , Síndrome , Fatores de Risco
11.
Sci Rep ; 12(1): 15905, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2042342

RESUMO

Long-haul COVID-19, also called post-acute sequelae of SARS-CoV-2 (PASC), is a new illness caused by SARS-CoV-2 infection and characterized by the persistence of symptoms. The purpose of this cross-sectional study was to identify a distinct and significant temporal pattern of PASC symptoms (symptom type and onset) among a nationwide sample of PASC survivors (n = 5652). The sample was randomly sorted into two independent samples for exploratory (EFA) and confirmatory factor analyses (CFA). Five factors emerged from the EFA: (1) cold and flu-like symptoms, (2) change in smell and/or taste, (3) dyspnea and chest pain, (4) cognitive and visual problems, and (5) cardiac symptoms. The CFA had excellent model fit (x2 = 513.721, df = 207, p < 0.01, TLI = 0.952, CFI = 0.964, RMSEA = 0.024). These findings demonstrate a novel symptom pattern for PASC. These findings can enable nurses in the identification of at-risk patients and facilitate early, systematic symptom management strategies for PASC.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Humanos , SARS-CoV-2 , Inquéritos e Questionários , Síndrome de COVID-19 Pós-Aguda
12.
J Adv Nurs ; 78(11): 3618-3628, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2019399

RESUMO

AIM: This paper proposes a novel, trauma-informed, conceptual model of care for Post-Acute Sequelae of COVID-19 illness (PASC). DESIGN: This paper describes essential elements, linkages and dimensions of the model that affect PASC patient experiences and the potential impact of trauma-informed care on outcomes. DATA SOURCES: PASC is a consequence of the global pandemic, and a new disease of which little is known. Our model was derived from the limited available studies, expert clinical experience specific to PASC survivors and publicly available social media narratives authored by PASC survivors. IMPLICATIONS FOR NURSING: The model provides a critical and novel framework for the understanding and care of persons affected by PASC. This model is aimed at the provision of nursing care, with the intention of reducing the traumatic impacts of the uncertain course of this disease, a lack of defined treatment options and difficulties in seeking care. The use of a trauma-informed care approach to PASC patients can enhance nurses' ability to remediate and ameliorate both the traumatic burden of and the symptoms and experience of the illness. CONCLUSION: Applying a trauma-informed perspective to care of PASC patients can help to reduce the overall burden of this complex condition. Owing to the fundamentally holistic perspective of the nursing profession, nurses are best positioned to implement care that addresses multiple facets of the PASC experience. IMPACT: The proposed model specifically addresses the myriad ways in which PASC may affect physical as well as mental and psychosocial dimensions of health. The model particularly seeks to suggest means of supporting patients who have already experienced a life-threatening illness and are now coping with its long-term impact. Since the scope of this impact is not yet defined, trauma-informed care for PASC patients is likely to reduce the overall health and systems burdens of this complex condition.


Assuntos
COVID-19 , SARS-CoV-2 , Adaptação Psicológica , Humanos , Pandemias , Sobreviventes
13.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: covidwho-2016695

RESUMO

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Genoma Viral , Estudo de Associação Genômica Ampla , Humanos , SARS-CoV-2/genética
14.
Front Microbiol ; 13: 829218, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1887105

RESUMO

The S2 subunit of infectious bronchitis virus (IBV) plays a critical role in the process of IBV infection. A comparison between the S2 subunit sequence of chicken embryo kidney cell (CEK) adapted virulent QX-like IBV strain SczyC30 (hereafter referred to as zy30) and its CEK-attenuated strain, SczyC100, revealed an N1038S substitution in S2 subunit and a 1154EQTRPKKSV1162 residue deletion in the C-terminus of the S2 subunit. In order to explore whether these two mutations are related to changes in the biological characteristics of IBV, we firstly constructed an infectious clone of zy30 using a bacterial artificial chromosome (BAC), which combines the transcription of infectious IBV genomic RNA in non-susceptible BHK-21 cells with the amplification of rescued virus rzy30 in CEK cells. Then, three recombinant viruses, including an rzy30S2-N1038S strain that contained the N1038S substitution, an rzy30S2-CT9△ strain that contained the 1154EQTRPKKSV1162 deletion, and an rzy30S2-N1038S-CT9△ strain that contained both mutations, were constructed using rescued virus rzy30 as the backbone. The results showed that each mutation did not significantly affect the replication titer in CEK cells but reduced pathogenicity in chickens, while in combination, the N1038S substitution and 1154EQTRPKKSV1162 deletion improved the proliferation efficiency in CEK cells and reduced pathogenicity, compared to rzy30 strain. The contribution made by the 1154EQTRPKKSV1162 deletion in reducing pathogenicity was higher than that of N1038S substitution. Our results revealed that the N1038S substitution and 1154EQTRPKKSV1162 deletion in S2 subunit were deeply involved in the replication efficiency of IBV and contributed to reduction of viral pathogenicity.

15.
Pharmaceutics ; 14(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1742580

RESUMO

Matrine (MAR), oxymatrine (OMAR), and sophoridine (SPD) are natural alkaloids with varying biological activities; matrine was recently used for the treatment of coronavirus disease 2019 (COVID-19). However, the short half-lives and rapid elimination of these matrine-type alkaloids would lead to low oral bioavailability and serious side effects. Herein, resveratrol (RES) was selected as a co-former to prepare their co-amorphous systems to improve the therapeutic index. The formation of co-amorphous MAR-RES, OMAR-RES, and SPD-RES was established through powder X-ray diffraction and modulated temperature differential scanning calorimetry. Furthermore, Fourier transform infrared spectroscopy and NMR studies revealed the strong molecular interactions between resveratrol and these alkaloids, especially OMAR-RES. Matrine, oxymatrine, and sophoridine in the co-amorphous systems showed sustained release behaviors in the dissolution experiments, due to the recrystallization of resveratrol on the surface of co-amorphous drugs. The three co-amorphous systems exhibited excellent physicochemical stability under high relative humidity conditions. Our study not only showed that minor structural changes of active pharmaceutical ingredients may have distinct molecular interactions with the co-former, but also discovered a new type of sustained release mechanism for co-amorphous drugs. This promising co-amorphous drug approach may present a unique opportunity for repurposing these very promising drugs against COVID-19.

16.
Biomedicines ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1638079

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting about 25% of world population, while there are still no approved targeted therapies. Although platensimycin (PTM) was first discovered to be a broad-spectrum antibiotic, it was also effective against type II diabetes in animal models due to its ability to inhibit both bacterial and mammalian fatty acid synthases (FASN). Herein, we report the pharmacological effect and potential mode of action of PTM against NAFLD in a Western diet/CCI4-induced mouse model and a free fatty acids (FFAs)-induced HepG2 cell model. The proper dose of PTM and its liposome-based nano-formulations not only significantly attenuated the Western diet-induced weight gain and the levels of plasma total triglycerides and glucose, but reduced liver steatosis in mice according to histological analyses. Western blotting analysis showed a reduced protein level of FASN in the mouse liver, suggesting that PTM intervened in the development of NAFLD through FASN inhibition. PTM reduced both the protein and mRNA levels of FASN in FFAs-induced HepG2 cells, as well as the expression of several key proteins in lipogenesis, including sterol regulatory element binding protein-1, acetyl-CoA carboxylase, and stearoyl-CoA desaturase. The expression of lipid oxidation-related genes, including peroxisome proliferator activated receptor α and acyl-CoA oxidase 1, was significantly elevated. In conclusion, our study supports the reposition of PTM to intervene in NAFLD progression, since it could effectively inhibit de novo lipogenesis.

17.
PLoS Negl Trop Dis ; 16(1): e0010048, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1606114

RESUMO

BACKGROUND: The first community transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant of concern (VOC) in Guangzhou, China occurred between May and June 2021. Herein, we describe the epidemiological characteristics of this outbreak and evaluate the implemented containment measures against this outbreak. METHODOLOGY/PRINCIPAL FINDINGS: Guangzhou Center for Disease Control and Prevention provided the data on SARS-CoV-2 infections reported between 21 May and 24 June 2021. We estimated the incubation period distribution by fitting a gamma distribution to the data, while the serial interval distribution was estimated by fitting a normal distribution. The instantaneous effective reproductive number (Rt) was estimated to reflect the transmissibility of SARS-CoV-2. Clinical severity was compared for cases with different vaccination statuses using an ordinal regression model after controlling for age. Of the reported local cases, 7/153 (4.6%) were asymptomatic. The median incubation period was 6.02 (95% confidence interval [CI]: 5.42-6.71) days and the means of serial intervals decreased from 5.19 (95% CI: 4.29-6.11) to 3.78 (95% CI: 2.74-4.81) days. The incubation period increased with age (P<0.001). A hierarchical prevention and control strategy against COVID-19 was implemented in Guangzhou, with Rt decreasing from 6.83 (95% credible interval [CrI]: 3.98-10.44) for the 7-day time window ending on 27 May 2021 to below 1 for the time window ending on 8 June and thereafter. Individuals with partial or full vaccination schedules with BBIBP-CorV or CoronaVac accounted for 15.3% of the COVID-19 cases. Clinical symptoms were milder in partially or fully vaccinated cases than in unvaccinated cases (odds ratio [OR] = 0.26 [95% CI: 0.07-0.94]). CONCLUSIONS/SIGNIFICANCE: The hierarchical prevention and control strategy against COVID-19 in Guangzhou was timely and effective. Authorised inactivated vaccines are likely to contribute to reducing the probability of developing severe disease. Our findings have important implications for the containment of COVID-19.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Número Básico de Reprodução , COVID-19/transmissão , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevenção Primária/métodos , Índice de Gravidade de Doença , Vacinação/estatística & dados numéricos , Adulto Jovem
18.
Biomaterials ; 280: 121249, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1507702

RESUMO

The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana
19.
Comput Biol Chem ; 95: 107599, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1487668

RESUMO

Novel coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which can be transmitted from person to person. As of September 21, 2021, over 228 million cases were diagnosed as COVID-19 infection in more than 200 countries and regions worldwide. The death toll is more than 4.69 million and the mortality rate has reached about 2.05% as it has gradually become a global plague, and the numbers are growing. Therefore, it is important to gain a deeper understanding of the genome and protein characteristics, clinical diagnostics, pathogenic mechanisms, and the development of antiviral drugs and vaccines against the novel coronavirus to deal with the COVID-19 pandemic. The traditional biology technologies are limited for COVID-19-related studies to understand the pandemic happening. Bioinformatics is the application of computational methods and analytical tools in the field of biological research which has obvious advantages in predicting the structure, product, function, and evolution of unknown genes and proteins, and in screening drugs and vaccines from a large amount of sequence information. Here, we comprehensively summarized several of the most important methods and applications relating to COVID-19 based on currently available reports of bioinformatics technologies, focusing on future research for overcoming the virus pandemic. Based on the next-generation sequencing (NGS) and third-generation sequencing (TGS) technology, not only virus can be detected, but also high quality SARS-CoV-2 genome could be obtained quickly. The emergence of data of genome sequences, variants, haplotypes of SARS-CoV-2 help us to understand genome and protein structure, variant calling, mutation, and other biological characteristics. After sequencing alignment and phylogenetic analysis, the bat may be the natural host of the novel coronavirus. Single-cell RNA sequencing provide abundant resource for discovering the mechanism of immune response induced by COVID-19. As an entry receptor, angiotensin-converting enzyme 2 (ACE2) can be used as a potential drug target to treat COVID-19. Molecular dynamics simulation, molecular docking and artificial intelligence (AI) technology of bioinformatics methods based on drug databases for SARS-CoV-2 can accelerate the development of drugs. Meanwhile, computational approaches are helpful to identify suitable vaccines to prevent COVID-19 infection through reverse vaccinology, Immunoinformatics and structural vaccinology.


Assuntos
COVID-19/epidemiologia , Biologia Computacional/métodos , Pandemias , Antivirais/uso terapêutico , Inteligência Artificial , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
20.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1437673

RESUMO

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Colite Ulcerativa , Dissulfiram/farmacocinética , Lactoferrina , Síndrome de Resposta Inflamatória Sistêmica , Inibidores de Acetaldeído Desidrogenases/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Materiais Biomiméticos/farmacologia , COVID-19/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Dissulfiram/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Imunossupressores/farmacologia , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Piroptose/efeitos dos fármacos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA